Small Systems

Small Systems Research Paper Hard Drives In this day and age of faster computers and high-speed processors, it should only stand to reason that hard drives meet the same requirements as the rest of the computer technology world. A technological look and some tips on maintaining or troubleshooting hard drives is included below. By keeping up with the standard of needs of the industry we can be assured that our personal computers will have all the necessary space and the ability to access and save the data as required and in an efficient manner. The new DiamondMax Plus 40 series from Maxtor can unleash your computer power with advanced technology and performance. Available in capacities up to 40 GB, these 7,200 RPM drives include Maxtor’s unique DualWave twin processor technology for a 10x boost in host command processing speed.

Coupled with 2 MB of high speed 100 MHz SDRAM for the cache buffer and an UltraDMA 66 interface, give our DualWave-equipped hard drives superior benchmark performance and maximum throughput. As a result, they’re an ideal choice for consumers working with large files, including audio and video applications. No matter how demanding your application, the new DiamondMax Plus 40 series delivers the ultimate in performance and capacity. With the popularity of multimedia, Internet and audio/video applications, more performance is demanded from desktop PC systems than ever before. System vendors are looking at all sub-components, including hard drives, as critical elements in increasing system speed and performance. As we go forward every part of the system will be called upon to improve throughput. The hard drive is a critical element in system performance, influencing how fast windows or Mac OS boots, how quickly applications launch, and the speed of loading large data or graphics files.

We Will Write a Custom Essay Specifically
For You For Only $13.90/page!

order now

Any operation that involves moving large amounts of information on or off the disk will reveal the importance of a high-performance hard drive. Many top PC manufacturers are expanding the use of 7200 RPM drives across all platforms and market segments. The performance achieved by 7200 RPM IDE drives also have made these drives a viable alternative to SCSI in traditional SCSI applications such as server and entry-level RAID. According to analysts at IDC, total worldwide shipments of 7200 RPM IDE drives is expected to be 16% of all IDE drives by the end of this year. This number is expected to be approximately 75% by the year 2002. The newly introduced DiamondMax Plus 40 hard drives feature a 7200 RPM rotational speed along with other performance-enhancing features that generate faster overall system response times and performance. A Viable Alternative to SCSI,IDE 7200 RPM drives have made their way into the storage-intensive environment of graphic and video applications.

The ability to achieve fast-sustained throughput is essential in high-end graphics and digital video content creation. 7200 RPM drives establish a new price/performance ratio in the professional graphic and digital video marketplace when compared to the SCSI alternative. Maxtor’s 7200 RPM IDE drives incorporate a larger buffer to provide high-sustained data transfer rates that are important when working with large files such as multimedia and video. Maxtor is a leader in caching technology, employing sophisticated algorithms similar to those found in high-end SCSI drives. Maxtor’s drives feature a 2 MB cache buffer incorporating a high-speed 100 MHz SDRAM memory, the same sort of memory found on today’s high performance systems.

Maxtor’s 7200 RPM drives were the first IDE drives to be featured in a RAID level 5 configuration in an uncompressed nonlinear video editing system. The drive’s high storage capacity, reliability and performance are well suited for this application. RAID level 5 provides protection against drive failures because in the event of a failure, the drive can be replaced without loss of data. This is especially critical in the video editing process, where 1 GB of storage typically holds approximately 1 minute of uncompressed video. The new DiamondMax Plus 40 drives include Maxtor’s MaxSafe and ShockBlock reliability feature set for added protection against surface scan errors and shock and handling damage.

This reliability set, when incorporated into a RAID level 5 configuration provides users in this market with unsurpassed protection against drive failures and potential loss from expensive downtime and data loss. The editorial community is taking notice of the SCSI-level performance that is achieved by today’s 7200 RPM IDE drives. In a recent product evaluation of Maxtor’s 7200 RPM drive published at, the reviewers tested the drive’s performance using an internally-developed benchmark. The results were impressive. In the copy test, the drive copied at 3.29 MB/sec., surpassing the results of a competitive SCSI-2 LVD drive.

Maxtor’s DiamondMax Plus 7200 RPM IDE drives are approximately 25% faster on copy speed than a competing SCSI drive! 7200 RPM Drives Improve Overall System Performance High-performance drives improve performance in several ways. The first is evident in the WinBench measurement, a popular means of evaluating system performance. In WinBench, a variety of popular applications are simulated and overall execution time measured. A weighting factor is applied to the execution time for each application package. Measurements have shown that 7200 RPM drives improve WinBench scores approximately 20% over equivalent capacity 5400 RPM drives. Considering that WinBench is a measure of overall system throughput, as opposed to just drive throughput, this is an impressive result.

Random throughput, especially important in database or server applications, is largely determined by seek time and rotational speed. In its roughest terms, random throughput, in operations per second, is the speed of processing a string of mall transfer commands where the data locations are randomly distributed over the disk. Maxtor’s new 7200 RPM rotational speed drive reduces rotational latency by 25% relative to 5400 RPM drives. This results in a substantial improvement in the drive’s random throughput. Sequential throughput, critical in graphics, video and entertainment applications, is ultimately determined by the drive’s internal data rate or the rate at which the recording head transfers data to and from the disk.

The factor that determines sustained throughput, the internal data rate, is indirectly determined by the drive’s rotational rate. Simply stated, a faster-spinning drive will tend to read data from the disk faster. If two drives, one 5400 and one 7200 RPM have the same capacity and the same number of disks; the 7200 RPM drive will read the same amount of data in a shorter period. Files therefore load faster, the OS boots in less time, and the computer responds more quickly. The insatiable need for performance in high-end computing systems and workstations requires new technologies and architectures in order to meet the demand. Maxtor’s new DiamondMax Plus 40 incorporates a host of features t …